68 research outputs found

    Effectiveness of cognitive therapy on reducing irrational beliefs of 12-14 Year old adolescents and 18-20 year old adolescents

    Get PDF
    This study seeks to see whether there is a significant difference in the extent to which REBT reduces irrational beliefs between the two experimental groups: 12-14 year old adolescents and 18-20 year old adolescents? An experimental pre-test and post-test design was used in this research. The sample consisted of 32 Iranian female adolescents living in Kuala Lumpur. They were assigned in 4 groups randomly: one 12-14 year old group, one18-20 year old group; and 2 control groups. Participants took part in 10 Cognitive Therapy sessions. Results show that the treatment has been effective in both groups, but it has been more effective in the 12-14 year old group. Based on this study, the researcher recommends providing REBT psycho-educational programs in educational settings for adolescents who live in foreign countries. Also, it is recommended to integrate cognitive programming as part of classroom curriculum

    Molecular characterization and susceptibility of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from hospitals and the community in Vladivostok, Russia

    Get PDF
    AbstractA prospective study was conducted during an 8-month period, from August 2006 to April 2007, to describe the epidemiology of Staphylococcus aureus-associated infections. In addition, the molecular characteristics, antimicrobial susceptibilities and antibiotic resistance determinants were identified in S. aureus isolates from hospitals and the community in Vladivostok, Russia. Among the 63 S. aureus isolates eligible for this study, methicillin resistance was observed in 48% (n = 30). Hospital-acquired strains accounted for 93% (28/30) of all methicillin-resistant S. aureus (MRSA) isolates. The major MRSA clone (sequence type (ST) 239, staphylococcal cassette chromosome mec (SCCmec) type III, Panton--Valentine leukocidin (PVL)-negative, with two related staphylococcal protein A gene (spa) types (types 3 and 351)) represented 90% of all of the MRSA isolates. This clone was multidrug-resistant, and 41% of isolates showed resistance to rifampicin. Community-acquired MRSA isolates (n = 2) were categorized as ST30, SCCmecIV, spa type 19, and PVL--positive, and as ST8, SCCmecIV, of a novel spa type 826, and PVL-negative. Eight different STs were detected among methicillin-susceptible S. aureus (MSSA) isolates, of which 55% were PVL--positive. One MSSA clone, which was categorized as ST121, spa type 273, and PVL--positive, caused fatal community-acquired pneumonia infections. The strains predominantly isolated in hospitals in Russia belonged to the multidrug-resistant Brazilian/Hungarian ST239 MRSA clone; however, this clone has new antibiotic susceptibilities. Additionally, the emergence of PVL--positive MSSA strains with enhanced virulence was observed, warranting continued surveillance

    Classical and Quantum Nambu Mechanics

    Full text link
    The classical and quantum features of Nambu mechanics are analyzed and fundamental issues are resolved. The classical theory is reviewed and developed utilizing varied examples. The quantum theory is discussed in a parallel presentation, and illustrated with detailed specific cases. Quantization is carried out with standard Hilbert space methods. With the proper physical interpretation, obtained by allowing for different time scales on different invariant sectors of a theory, the resulting non-Abelian approach to quantum Nambu mechanics is shown to be fully consistent.Comment: 44 pages, 1 figure, 1 table Minor changes to conform to journal versio

    Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck

    Get PDF
    Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness.published_or_final_versio

    Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine

    Get PDF
    The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine. Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well. Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics (MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Reassortment and Mutations Associated with Emergence and Spread of Oseltamivir-Resistant Seasonal Influenza A/H1N1 Viruses in 2005–2009

    Get PDF
    A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA), conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007–2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005–2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA) sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007–2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2) proteins and subsequently caused the 2008–2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes

    Detection of diverse genotypes of Methicillin-resistant Staphylococcus aureus from hospital personnel and the environment in Armenia

    Get PDF
    Background Methicillin-resistant Staphylococcus aureus (MRSA) is a public health concern internationally. Studies examining a range of cohorts have been reported from various regions of the world, but little is known about the molecular epidemiology of MRSA in Armenia. Methods Between May and September 2013, twenty isolates of methicillin-resistant Staphylococcus aureus (MRSA; mecA positive) were recovered from hospital personnel (n = 10; 9 females, 1 male) and environmental sites (n = 10) in the maternity ward of one of the teaching hospitals in Armenia. Results Multi-locus sequence type clonal complex (MLST-CC) assignments inferred from spa typing data revealed the majority belonged to 3 pandemic lineages of MRSA including: t008-CC8-SCCmecV (n = 10; 7 from personnel); t021-CC30-SCCmecIV (n = 5; all environmental); and t1523-CC45 (n = 2; 1 from personnel), one harboured SCCmecV the other was SCCmec non-typable. The remainder identified as belonging to genotype t364-CC182, both of which harboured a novel SCCmec cassette with kdp, rif5, ccrB2 and ccrC detected by PCR (both from personnel); and t325-CC88-SCCmecIV (n = 1; environmental). All MRSA were negative for the Panton-Valentine Leukocidin (PVL) locus and three CC8 strains were positive for the arginine catabolic element (ACME). Conclusions In this small study, we report for the first time of the occurrence of diverse MRSA genotypes belonging to both pandemic and more sporadic international clones in Armenia harbouring the smaller SCCmec types and/or ACME, both of which have been associated with strain fitness. Further surveillance is warranted to better understand the prevalence, clinical and molecular epidemiology of MRSA throughout Armenia

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    Structure-based drug discovery for combating influenza virus by targeting the PA?PB1 interaction

    Get PDF
    Influenza virus infections are serious public health concerns throughout the world. The development of compounds with novel mechanisms of action is urgently required due to the emergence of viruses with resistance to the currently-approved anti-influenza viral drugs. We performed in silico screening using a structure-based drug discovery algorithm called Nagasaki University Docking Engine (NUDE), which is optimised for a GPU-based supercomputer (DEstination for Gpu Intensive MAchine; DEGIMA), by targeting influenza viral PA protein. The compounds selected by NUDE were tested for anti-influenza virus activity using a cell-based assay. The most potent compound, designated as PA-49, is a medium-sized quinolinone derivative bearing a tetrazole moiety, and it inhibited the replication of influenza virus A/WSN/33 at a half maximal inhibitory concentration of 0.47?μM. PA-49 has the ability to bind PA and its anti-influenza activity was promising against various influenza strains, including a clinical isolate of A(H1N1)pdm09 and type B viruses. The docking simulation suggested that PA-49 interrupts the PA?PB1 interface where important amino acids are mostly conserved in the virus strains tested, suggesting the strain independent utility. Because our NUDE/DEGIMA system is rapid and efficient, it may help effective drug discovery against the influenza virus and other emerging viruses
    corecore